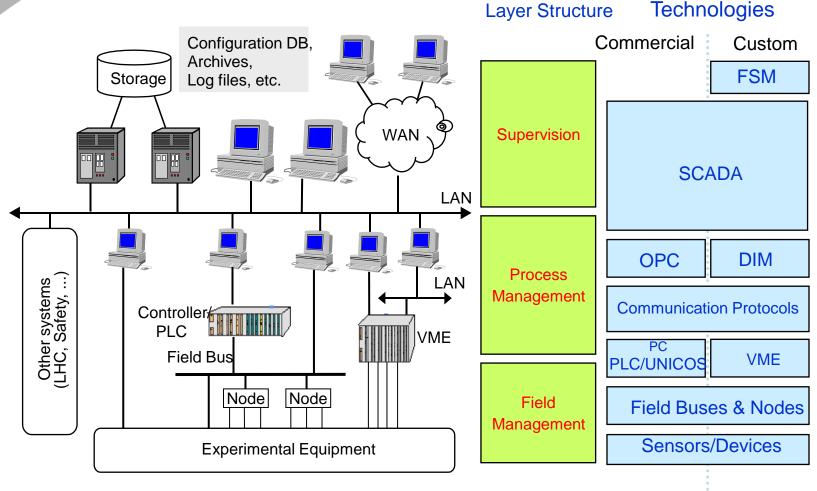


Automation and Control

CERN openlab 29 September 2009

Renaud BARILLERE


Outline

- Introduction
- Security and control devices
 - Openlab fellow: F. TILARO
 - CERN tech. sup.: B. COPY
- PLC IDE evolution
 - Openlab fellow:O. KHALID
 - CERN tech. sup.: M. DUTOUR
- PVSS
 - Openlab staff: D. RODRIGUES
 - Openlab fellow: I. MAGRANS
 - CERN tech. sup.: M. GONZALES

Controls architecture

Security - Background

Technological Evolution:

- Growing interconnectivity between the fabric level and the management one.
- IT functionalities with inherent vulnerabilities into control devices.
- No widely accepted security standard nor guidelines.
- Effect:
 - Control Systems are exposed: recovery from attacks is expensive (time, cost, effort).

Objectives

- To improve the level of control system security.
- Discover and Classify vulnerabilities of control system devices.

Security - Approach

- Investigate cyber security standards
- Determine key cyber security aspects relevant to CERN
- Re-assess the robustness of Siemens PLCs products
- Define and produce a test bench
 - To discover vulnerabilities
 - To develop sophisticated attacks
- Defining metrics for security evaluation

Security - Achievements I

WP1: Reviewing Existing Standards

- Analyzed industrial security standards
 - ISA-99, NERC-CIP, IEC-62
- Identified the most relevant
 - ISA-99 is suitable for any kind of control system

WP2: Test bench Implementation

- Key requirements definition
 - Extensible, deterministic, first list of vulnerabilities
- Tools evaluation and selection to perform attacks
 - OpenVas, Netwox & Netwag, NMap
- Test bench implementation and validation against:
 - S7-300, S7-400, S7-1200 PLCs
 - Non-Siemens third party control devices

Security - Achievements II

WP3: Security Evaluation

- Design of an advanced PLCs Monitoring Service
 - Configuration of the open-source "Cacti" SNMP server
 - Implementation of a traffic monitor using open source library
- Usage of available libraries:
 - To monitor and discover vulnerabilities
 - JMatic Library used to control and circumvent security features
- Preliminary results found on new S7-1200 and old S7-300
 - Return to Siemens as inputs to new qualification tests
- WP4: Test bench improvements
 - Sophisticated attacks search findings:
 - "Fuzzing" is a technique used to discover weaknesses in protocol implementations
 - Selected "Peach Fuzzer" for next phase

Security - On going activities

- WP2: Test bench Implementation
 - Perform further S7-1200 PLC security evaluations
- WP3: Security Evaluation
 - Upgrade test bench architecture components
 - Improving the PLC monitoring framework in order to detect a finer granularity of vulnerabilities
 - Monitor the CPU activity for loss of control
 - Perform CERN risk analysis
- WP4: Test bench Improvements
 - Testing and Analysis of Wurldtech Achilles Satellite
 - Comparison with other general vulnerability Assessment tools
 - Effectiveness against S7-400 (not only S7-300 and S7-1200)
 - Extract the maximum knowledge and benefits from Achilles

Security - Project Plan Overview

WP 1: Review existing standards Started Expected End Date: October 2009 WP 2: Test bench Implementation Started Expected End Date: November 2009 WP 3: Security Evaluation Started Expected End Date: December 2009 WP 4: Test bench Improvements Started Expected End Date: on-going WP 5: Future milestones Not Started

Expected End Date: (waiting for S7-1500)

- Aim: To bring-in modern software engineering capabilities to Step7 product line. Divided in to 2 phases:
 - Step7 "Automated Deployment"
 - To automate the deploy Siemens software (Step7 initially) on a group of machines
 - Scalability: from small (10's of machines) to large (100's of machines)
 - Easy and flexible to deploy, fast refresh rate
 - Step7 "Openness"
 - Source code versioning control
 - Syntax highlighting
 - Automatic code generators

Step7 - Approach

- Siemens decided to focus on "Deployment" only in the first phase of the project.
- Work packages (WP) and deliverables
 - in Mar 09 when the project started in consultations with Siemens
- Steps:
 - To evaluate available deployment tools in the market
 - Understanding PLC user practices and Step7 deployment use cases at CERN
 - Analysis of Siemens installation framework (SIA)
 - Design, Implementation and Feasibility study of the proposal
 - Validation at CERN and handing over to Siemens

Market Survey

penlab

Completed (May09)

- Extensive survey of the off the shelf deployment tools
 - More than 15, including CERN CMF.
- Tools evaluated, shortlisted and selected
 - Selection metrics:
 - » scalability, deployment refresh rate, licensing
 - » MSI based packaging and deployment was selected for evaluation for Siemens Installer Framework.
- License purchased for CFEngine for feasibility study
- PLC/Step7 Survey

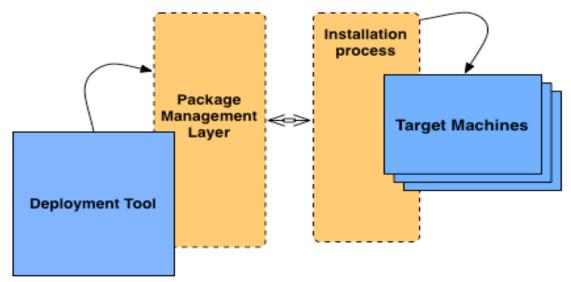
Completed (Jun09)

- Focusing only on installation and deployment
 - Targeting PLC and Step7 users and developers
- Results / User wish list:
 - Silent installation, automation of deployment, clientserver model, possible use of virtualization technology

Step7 - Quarterly Review

Siemens – Step7 Workshop

- Held in July 09 at CERN
- Existing work packages results were reported, and feedback gathered
- Intensive brainstorming sessions on:
 - Possible new ideas based on user feedback and broader trends in software development
 - Analysis of Siemens installer architecture
 - Different MSI based deployment model were proposed
 - To separate installation mechanisms from deployment on target machines
 - Agreement on two MSI approaches:
 - Using MSI wrappers for legacy application
 - » since stability is a key requirement
 - Migrating most of installer capabilities to MSI packages


Step7 - Proposed Architecture

Currently:

• Installation is done through stand-alone executable

Proposal:

 Separation of installation from deployment process to migrate towards MSI based packaging model for the software

Step7 - On going activities

penlab

WP 3: SW Design – Use cases

- Use cases identified and documented
 - e.g. clean installation, repair and update existing packages
- WP 4: SW Design Architecture
 - Completed first draft of design document
 - Continuing expanding towards MSI model
 - Interfacing directly with Siemens developers
- WP 5: Feasibility Study
 - Developing prototype MSI packages for SIA installer to validate design ideas:
 - Separate set of packages for legacy versions of Step7
 - Management of migratory path future installer packages
 - To be compliant for large number of software deployment tools

Started

Started

Started

PVSS - Overview

- First defined activities
 - SVN plugin
 - Installation Tool
 - Oracle Archiver
 - Web Plugin
- Training
 - PVSS course
 - Technical meetings on Oracle Archiver (Eisenstadt)
 - Hands on with source code

PVSS - SVN plugin

- Served as introductory task to PVSS environment
- Provides source versioning to PVSS users
 - Enhancing project management
 - Supporting concurrent development
- Based on existing CVS plugin, using Ctrl
- Prototype was made available
- Several improvements already identified
 - Under development
- On hold (task reprioritized)

PVSS - Installation Tool

- To facilitate the management of large PVSS Distributed Control Systems
 - More than 150 PVSS applications in a large LHC experiment DCS
- Work done:
 - Requirements and use cases document sent to ETM for discussion
 - Survey of related technologies
 - Analysis of constraint based technologies
 - Survey of existing configuration management tools able to manage PVSS control systems
- Training and hands on activities:
 - Helping to support the CERN Installation Tool

PVSS - Oracle Archiver 1/2

CERN openlab

Improvement of reliability and stability

- Major issues were identified by users affecting the Oracle Archiver
- Openlab permitted to closely follow the issues directly on a production environment
- Patch 41 released with major contributions and input from Openlab
- Several critical bugs affecting both CERN and other ETM clients were fixed within this activity scope
- Additional objectives
 - Getting introduced to ETM workspace
 - first look into the oracle archiver potentially permitting identification of redesign needs
- Tasks completed

PVSS - Oracle Archiver 2/2

- Redesign of the Oracle Archiver
 - Code redesign is necessary
 - Current code built around a specific request
 - Not easy to add features/extensions
 - Difficulties in tracing issues
 - Working on reliability and stability permitted understanding of the current limitations on Oracle Archiver
 - Task on hold, waiting Siemens input.

PVSS – Conclusion

- Focus on training
 - As PVSS Users
 - As PVSS developers
 - Conditions for the development at CERN.
- Results for users
 - While learning
 - Benefit not limited to CERN users
- SVN and ORACLER WPs are well advanced
- Web Plug-in WP is just started.